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Multi-welled energy landscapes are key to microstructural pattern formation observed in solids
that undergo, e.g., phase transformations [1], ferroelectric/magnetic domain switching [2, 3], diffu-
sive phase separation [4, 5], or deformation twinning [6]. The nonconvex energy entails a thermody-
namic preference for what in mathematics is known as minimizing sequences [7]: assisted by applied
fields and microstructural defects, homogeneous states of deformation (or of electro-magnetic fields)
give way to energy-minimizing mixtures of domains (i.e., uniform regions in local energy minima)
separated by a network of domain walls. Under load, domain walls move – a dissipative process
that produces the macroscopically-observed hysteresis and is of importance for, e.g., shape memory
alloys [8], ferroelectric poling [9], and multiferroics [10]. Here, we present a purely mechanical, size-
independent structure (or metamaterial) that exhibits similar domain evolution phenomena, and
we demonstrate via numerical examples that the system additionally obeys quantitatively analo-
gous fundamental governing laws but with extreme tunability and experimental accessibility. This
constitutes a new theoretical paradigm to capitalize on microstructural dynamic processes and to
export the nonlinear kinetics to the structural scale, which admits experimental implementation.

The ever decreasing resolution in additive manufactur-
ing techniques has created opportunities for the bottom-
up design of novel (meta)materials. Examples include
truss lattices and hierarchical nanotrusses with supe-
rior stiffness and strength scaling [11], auxetic behav-
ior [12], thermal management [13], acoustic or phononic
wave control [14, 15], and energy absorption [16]. Nature
has inspired the emulation of atomic-scale architectures
at the macroscopic, structural level, resulting in, e.g.,
acoustic metamaterials [17], topological defects and soft
modes [18], and structural transitions [19]. At this level,
topological transformations and domain patterning occur
as a consequence of structural instability and the associ-
ated nonconvex energy landscape implying more than one
stable equilibrium configuration. Despite various exam-
ples that realized static domain formation through pat-
terning [18, 20, 21], no attempt has been made at ex-
ploiting their nonlinear dynamic evolution, although the
controllable nonlinear hysteresis appears promising for
applications from morphing surfaces and haptics to soft
robotics and structural logic. Our goal is to show, by
rigorous analysis and comparison between the new struc-
ture and microstructural processes, that microstructural
kinetic domain evolution can be emulated by multistable
mechanical metamaterials, which may inspire experimen-
tal realizations in the future.

Our mechanical analog translates the atomic-scale po-
larization found, e.g., in ferroelectrics, into a scalar po-
larization field that possesses one or two stable equi-
libria depending on the ambient conditions, just as the
Landau-Devonshire energy density changes with temper-
ature through a second-order phase transition [22–24].
This is likely the simplest and most instructive system
possible to reproduce key features of atomic-scale struc-
tural transitions, viz. domain formation and switching
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(see Figure 1a and c). As shown in Figure 1e, we con-
sider a 2D periodic array of elastically-connected bistable
elements which drive the system towards domains of uni-
form polarization, while the elastic connections penalize
and thus localize domain walls to interpolate between op-
posing phases. Our recent experiments [25, 26] showed
that 1D arrays following the same blueprint give rise to
stable transition waves that snap between the two stable
states (Figure 1b) while propagating at constant speed,
provided the bistable energy potential is non-symmetric,
so that each snap releases elastic energy that propels the
domain wall. Unlike topological zero-energy modes [18],
these systems are statically determinate and the transi-
tion wave results from the stabilized competition between
elastic energy release and dissipation through mechanical
damping [27, 28].

We consider a 2D periodic network of cylindrical
masses M with a single (rotational) degree of freedom ϕ,
the polarization. A salient feature of the structure, mul-
tistability arises from elastic springs that attach eccentri-
cally to each cylinder at one end and to an anchor point
(elevated by a distance fz) at the other (Figure 1f). The
action of gravity on additional masses m eccentrically
placed on the cylinders creates a torque when the rota-
tion axis and gravity field are not aligned. The resulting
multi-welled energy landscape can be tuned by (i) mov-
ing the elevated plane (i.e., a ceiling) of anchor points
(by a distance fx) and/or (ii) tilting the entire system
(by angles α,β). In the level condition (i.e., α = β = 0),
choosing fx 6= 0 imbues each element with multiple sta-
ble states ϕi 6= 0, limited to two by the addition of a
torsional spring (relaxed at ϕ = 0). Moving ceiling and
cylinders relative to each other so that fx → 0 turns the
bistable energy (with polar stable configurations ϕi 6= 0)
into a single energy well with stable unpolar ground state
ϕ = 0.

The Hamiltonian of a 2D network with N periodically
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Figure 1. Phase transformations, ferroic domain switching, and diffusive phase separation are material processess enabled by a
multi-welled energy landscape. a) Below the Curie temperature, ferroelectrics exhibit a spontaneous polarization due to broken
crystal symmetry which displaces the central ion outside the midplane, creating a dipole. b) A mechanical system, e.g., in a
1D chain of bistable elements, may display a scalar polarization. c) The underlying kinetics of structural transformations are
observed in discrete like continuous systems. d) Common to all, these systems possess a multi-welled energy landscape. e) Each
element of our 2D mechanical system exhibits a bistable potential and, through the use of masses and springs (see schematic in
f)), recovers all the processes mentioned previously. Tilting the mechanical structure by α and/or β (positive counter-clockwise
when looking down the respective axis) permits a gravitational field to induce domain switching.

arranged cylinders of radius R is given by

H =

N∑
i=1

[
1

2
Iϕ̇2

i + ψ(ϕi,θ,f)

]
+

N∑
i,j=1

V (ϕi − ϕj) (1)

with I the total rotational inertia and ψ(ϕ,θ,f) the non-
linear multi-welled energy resulting from springs and tun-
able via θ = {α, β} and f = {fx, fy, fz} [29]. If elas-
tic bands link the cylinders (Figure 1e), then V (∆ϕ) =
kij(R∆ϕ)2 is an elastic interaction potential. In every
realistic system, dissipation of kinetic energy through,
e.g., friction is inevitable, thus motivating the inclusion of
velocity-proportional damping with damping constant η
in the governing equation of momentum balance (Hamil-
ton’s equation of motion). Hence, our discrete mechani-
cal network is described by (for i = 1, . . . , N , and writing

ψ′ = ∂ψ/∂ϕ)

Iϕ̈i + ηϕ̇i + ψ′(ϕi,θ,f)−R2
∑
j

kij (ϕi − ϕj) = 0. (2)

Similar to viewing an atomistic ensemble from a per-
spective at greater scale, we now zoom out and observe
the dynamic processes in a homogenized sense. Math-
ematically, this calls for taking the continuum limit as
the inter-mass spacing a goes to zero. The resulting con-
tinuum model [29] based on a continuous rotational field
ϕ(x) is analogous to the polarization field in phase field
models of domain evolution in, e.g., phase transforma-
tions, twinning, reaction-diffusion processes, and ferro-
electrics [3, 4, 30–32]. Specifically, Equation (2) becomes
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Figure 2. Phase transformations are induced externally through motion of the ceiling. a) The energy landscape becomes single-
welled b) as the equilibrium polarizations coalesce in a smooth, second-order transformation. c) A peak in the total energy
dissipation rate r̄d (normalized to unity) reveals the transformation fx in a system with (red) and without (black) defects.
d) Tilting the structure by α applies a gravitational field biasing the energy landscape toward one polarization, leading to
switching and characteristic hysteresis: mean e) polarization ϕ̄, f) strain |ϕ̄|, and g) momentum p̄ (normalized by p = 0.0135).
h) Defects act as nucleation sites, encouraging premature switching as depicted in system snapshots at qualitatively unique
stages in the hysteresis.

[29]

ρϕ̈+ νϕ̇ =
∂

∂xi

(
κij

∂ϕ

∂xj

)
− ψ′(ϕ,θ,f) (3)

with the symmetric coefficients κij determined by
the periodic arrangement and connecting stiffnesses

(thus allowing for system tunability to display differ-
ent anisotropic domain wall energies), inertial density ρ
and inverse mobility ν. Notice that, if there is isotropy
(κij = κI) and significant damping (|ρϕ̈| � |νϕ̇|) as in
our recent 1D experiments [26], then we recover the well-
known Allen-Cahn equation [33, 34] of phase separation,
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i.e.,

νϕ̇ = κ∆ϕ− ψ′(ϕ,θ,f). (4)

In our network, the elastic connections play the role of
interfacial energy, while the on-site potential ψ mimics
the multi-welled Landau-Devonshire energy [22–24], and
frictional damping determines the mobility.

Below the Curie temperature Tc [2] asymmetry in
the crystal structure leads to a polarized state in fer-
roic ceramics. Above this critical temperature, a phase
transformation occurs resulting in an unpolar, centro-
symmetric crystal structure. From an energy perspec-
tive, the 2d stable equilibria of the local potential (mod-
eled, e.g., by Landau-Devonshire theory [22–24] in d di-
mensions) merge into a single minimum. As depicted
in Figure 2a, our mechanical structure demonstrates
the same transformation when moving the ceiling, viz.,
fx → 0; two polarizations coalesce below a transforma-
tion “temperature” of fx = 1.78 (Figure 2b). Conve-
niently, knowledge of the functional form of ψ permits
the transformation fx to be predicted numerically [29].
A polynomial expansion of the on-site potential ψ can
be used to approximate ϕ1,2 = ϕ1,2(fx) in the polarized
state, showing that the critical exponent of 1/2 agrees
with classical Ginzburg-Landau theory for ferroelectrics
in 1D where the polarization scales with temperature
T ≤ Tc as (T − Tc)1/2; see [29].

For materials, Differential Scanning Calorimetry
(DSC) reveals the transformation temperature as a
marked change in the heat flux required to control the
sample temperature [35]. By analogy, in Figure 2c we
observe a stark increase (peaking at fx = 1.77) in the to-

tal dissipation rate (“heat flux”) r̄d =
∑N

i=1 η|ϕ̇i|2 when
cycling fx (“temperature”) between polar and unpolar
values (all numerical data are normalized [29]).

Like at the material level, the unrealistic absence of
defects promotes a homogeneous transformation. Fig-
ure 2c shows lattice defects (a random subpopulation of
cylinders [36] fixed in their initial polarization mimicking
immobile dipoles, solutes, or vacancies [37]) offer nucle-
ation sites during polarization and represent obstacles to
depolarization. This leads to a direction-dependent shift
in the transformation fx.

In the polar phase, applying electric fields to pervoskite
ceramics results in domain switching, a process which –
through nucleation and domain wall motion – gradually
compels the solid towards one polarization. The applied
field biases the multi-welled energy through a linear tilt,
propelling the domain switching. By analogy, tilting the
system of oscillators about the x- and/or y-axis (Fig-
ure 2d) activates the gravitational component of the on-
site potential. Sufficient rotation about the x-axis trans-
forms the local potential to a single well energetically
favorable to one polarization. Consequently, ferroic-like
switching of the polarization is observed in response to
gravitation. Classic hysteretic behavior is displayed when
cycling the tilt angle beyond the critical values α = ±αc

(with α akin to the coercive electric field) at which sud-
den, large changes in polarization occur.

Starting from a random initial distribution of ϕ, we in-
duce domain switching by cyclically adjusting α (β = 0)
in a gradual manner so as to minimize rate effects. Fig-
ure 2e shows a characteristic hysteresis loop, where tilt
angle and mean rotation of the cylinders, respectively,
are the system equivalent of, e.g., electric field and po-
larization for ferroelectrics. Following an initial transient
period during which the noisy distribution of ϕ proceeds
towards a homogeneous polarization, without nucleation
sites, the system responds uniformly as the loop is tra-
versed, experiencing a reversal of polarization at the crit-
ical tilt angles αc = ±0.76◦ predicted by ψ. Realisti-
cally, defects exist within the system, acting as a cata-
lyst for switching by providing nucleation sites for the
opposing polarization, reducing αc. Thus, the loop is
noticeably compressed in comparison to the defect-free
scenario. Pinning of domain walls at defects is also ap-
parent as in ferroelectrics [37, 38]. Figures 2f and 2g,
respectively, depict the corresponding polarization and
momentum loops, analogous to the strain (butterfly loop)
and electric current hysteresis in ferroelectrics. The se-
ries of snapshots in Figure 2h (and Movie S1) illustrate
the system throughout the hysteresis. Scenes (1) and
(3), respectively, show a system of polarization ϕ+ and
ϕ− with defects of opposing polarization clearly visible.
Note that the scalar polarization field chosen here cannot
differentiate between 180◦- and 90◦-domain walls; how-
ever, this objective is feasible through an extension (e.g.,
replacing rotations by translational motion).

For planar wave fronts, the balance between the en-
ergy release ∆ψ during the transition and the viscous
drag (characterized by η) determines the energy density
Ed and speed v of the domain wall resulting from Equa-
tion (2), which admits the theoretical scaling prediction
[29]

Ed/v ' ∆ψ/2η. (5)

As expected, wall motion occurs in the direction of de-
scending energy (i.e., v and ∆ψ must be of the same sign
[28]). Equation (5) is verified in Figure 3a for transitions
propagating along different directions and within differ-
ent elastic networks, showing convincing agreement for
sufficiently wide [39] wave fronts. The width is widened
(narrowed) by increasing (decreasing) the elastic band
stiffness in the propagation direction. Similar effects are
obtained if the lattice constants are of unequal magni-
tude. Discreteness effects manifest, e.g., for the isotropic
case, through the slow convergence with increasing width
w under 45◦ in contrast to 0◦ and 90◦ wave fronts; orien-
tations of 45◦ encounter the sparsest packing of masses.

Differences between the mechanical metamaterial, gov-
erned by Equation (2), and the mesoscale phase field de-
scription of Equation (4) stem primarily from (i) dis-
creteness effects and (ii) inertial effects. The former de-
cay with increasing coupling kij between cylinders; the
latter with increasing viscosity η and/or decreasing iner-
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Figure 3. Domain wall motion obeys fundamental governing laws of energy transport and phase separation. a) Planar domain
walls follow the kinetics of Equation (5). b) The measured speed of gently curved (Rc � w) domain walls resulting from phase
separation are effectively predicted by the Allen-Cahn equation [29]. Inset: the profile of a transition wave interpolating the
ϕ− and ϕ+ configurations with the approximated transition region (of width w) shaded. c) From noisy initial conditions, the
mechanical system evolves homogeneous domains of either ϕ− or ϕ+ polarization, involving the motion of domain walls.

tia I. With the inertial and coupling conditions satisfied,
the kinetics of phase separation within a system of os-
cillators is described by Equation (4). In particular, for
smooth domain boundaries of sufficiently small curvature
ς, the wall speed is predicted to be proportional to the
local curvature, v ∼ ς (the radius of curvature Rc = 1/ς)
[34]. Figure 3b compares the speed s of a propagating
domain wall as obtained from the discrete system (Equa-
tion 2) and v from the Allen-Cahn model (Equation 4),
with excellent agreement provided the curvature is small.
Through a series of snapshots, Figure 3c illustrates the
process of phase separation within a system of oscillators
with periodic boundary conditions (see also Movie S2).

In summary, the reported purely elastic mechanical

system displays several key features commonly found in
atomic- or mesoscale physics of solids (thus mimicking
atomic phenomena, or being atomimetic). The rotating-
mass network shows qualitatively analogous features as,
e.g., ferroic ceramics or phase-transforming solids, and
the discrete governing equation was shown to approach
the phase field equation commonly used to simulate the
above processes, therefore demonstrating quantitative
agreement if discreteness and inertial effects are suffi-
ciently small (like in macroscale systems, entropic effects
are not considered). This offers untapped opportunities
for reproducing material-level, dissipative and diffusive
kinetic phenomena at the structural level, which – in turn
– invites experimental realization and paves the road to-
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wards new active, intelligent, or phase-transforming me-
chanical metamaterials bringing small-scale processes to
the macroscopically-observable scale.

METHODS

Material parameters of a lattice of bistable cylinders
with nearest- and next-nearest-neighbor interactions – I,
η, kij , and those within ψ – are rendered dimension-
less as described in the Supplementary Information [29].
The governing equations of a 150a × 150a system with
periodic boundary conditions are numerically integrated
via an explicit scheme [40]. The structure exhibits do-
main switching and phase transformation as described
resulting in the formation and movement of domain walls
whose kinetics are described by a scaling law and the
Allen-Cahn equation. To verify the scaling law, we tilt
the system by α such that the energy landscape remains
double-welled but energetically favorable to one polar-
ization (here ϕ+). Initially of homogeneous ϕ−, a line of
sites is gradually rotated into ϕ+, ultimately provoking
the propagation of transition waves in the perpendicular
direction. Here, the system has periodic boundary con-

dition applied only along the propagating direction. The
dimensions of the system are modified to allow domain
walls sufficient time and space to achieve a steady state.
Finally, to verify that the Allen-Cahn model describes
the evolution of domain walls in the limit |Iϕ̈| � |ηϕ̇|,
we initialize the system with a circular domain (radius,
Rc = 55a) of polarization ϕ− within an otherwise uni-
form field of polarization ϕ+ and monitor the speed s of
the domain boundary (defined by ϕ = 0◦).

SUPPORTING INFORMATION

Supporting Information is available from
the Wiley Online Library or from the author
kochmann@caltech.edu.
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